Whole genome analysis for QTL/association enrichment
Running...
Version: Enrich S: beta v0.8
Data:
Number of reproductive organs traits:
6
Number of QTL / associations found:
407
Number of chromosomes where QTL / associations are found:
12
Chi-squared (χ2) test: are reproductive organs traits over-represented on some chromosomes?
Chromosomes
Total χ2
df
p-values
FDR *
Size of χ2
Chromosome 1
10196.75796
11
9e-41
1.080000e-39
Chromosome 2
118.82184
11
3.128172e-20
5.362581e-20
Chromosome 3
39.36240
11
4.596275e-05
6.128367e-05
Chromosome 4
1.68180
11
0.9993383
9.993383e-01
Chromosome 6
180.20760
11
9.287393e-33
2.228974e-32
Chromosome 7
101.19042
11
1.037506e-16
1.556259e-16
Chromosome 8
128.16828
11
4.085272e-22
8.170544e-22
Chromosome 10
29.51472
11
0.001887575
2.265090e-03
Chromosome 11
191.67690
11
3.950203e-35
2.370122e-34
Chromosome 13
180.20760
11
9.287393e-33
2.228974e-32
Chromosome 24
180.20760
11
9.287393e-33
2.228974e-32
Chromosome 28
17.39682
11
0.09667346
1.054620e-01
Chi-squared (χ2) test: Which of the 6 reproductive organs traits are over-represented in the QTLdb
Traits
Total χ2
df
p-values
FDR *
Size of χ2
Ovary percentage
152.04763
5
4.893339e-31
9.786678e-31
Ovary weight
268.60249
5
5.585162e-56
3.351097e-55
Oviduct length
51.72111
5
6.154078e-10
7.384894e-10
Oviduct weight
43.41694
5
3.041503e-08
3.041503e-08
Testes percentage
203.69506
5
4.600973e-42
1.380292e-41
Testes weight
150.89947
5
8.591163e-31
1.288674e-30
Correlations found between some of these traits for your reference
No correlation data found on these traits
Overall Test
Data
Chi'Square Test
Fisher's Exact Test
Number of chrom.:
12
χ2
=
11365.193940
Number of traits:
6
df
=
55
Number of QTLs:
407
p-value
=
0
FOOT NOTE: * : FDR is short for "false
discovery rate", representing the expected proportion of type I errors. A type I
error is where you incorrectly reject the null hypothesis, i.e. you get a false
positive. It's statistical definition is FDR = E(V/R | R > 0) P(R > 0), where
V = Number of Type I errors (false positives); R = Number of rejected hypotheses.
Benjamini–Hochberg procedure is a practical way to estimate FDR.